Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; 14000 LNCS:199-221, 2023.
Article in English | Scopus | ID: covidwho-2300924

ABSTRACT

Safety-critical infrastructures must operate in a safe and reliable way. Fault tree analysis is a widespread method used for risk assessment of these systems: fault trees (FTs) are required by, e.g., the Federal Aviation Administration and the Nuclear Regulatory Commission. In spite of their popularity, little work has been done on formulating structural queries about and analyzing these, e.g., when evaluating potential scenarios, and to give practitioners instruments to formulate queries on in an understandable yet powerful way. In this paper, we aim to fill this gap by extending [37], a logic that reasons about Boolean. To do so, we introduce a Probabilistic Fault tree Logic is a simple, yet expressive logic that supports easier formulation of complex scenarios and specification of FT properties that comprise probabilities. Alongside, we present, a domain specific language to further ease property specification. We showcase and by applying them to a COVID-19 related FT and to a FT for an oil/gas pipeline. Finally, we present theory and model checking algorithms based on binary decision diagrams (BDDs). © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2.
25th International Symposium on Formal Methods, FM 2023 ; 14000 LNCS:199-221, 2023.
Article in English | Scopus | ID: covidwho-2274182

ABSTRACT

Safety-critical infrastructures must operate in a safe and reliable way. Fault tree analysis is a widespread method used for risk assessment of these systems: fault trees (FTs) are required by, e.g., the Federal Aviation Administration and the Nuclear Regulatory Commission. In spite of their popularity, little work has been done on formulating structural queries about and analyzing these, e.g., when evaluating potential scenarios, and to give practitioners instruments to formulate queries on in an understandable yet powerful way. In this paper, we aim to fill this gap by extending [37], a logic that reasons about Boolean. To do so, we introduce a Probabilistic Fault tree Logic is a simple, yet expressive logic that supports easier formulation of complex scenarios and specification of FT properties that comprise probabilities. Alongside, we present, a domain specific language to further ease property specification. We showcase and by applying them to a COVID-19 related FT and to a FT for an oil/gas pipeline. Finally, we present theory and model checking algorithms based on binary decision diagrams (BDDs). © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL